Real-time Dynamics Simulation of Unmanned Sea Surface Vehicle for Virtual Environments
نویسندگان
چکیده
The role of virtual environments (VE) is crucial in efficient design and operation of unmanned vehicles. VEs are extensively used in operator training for tele-operation, planning using programming by demonstration, and hardware and software design. VE for unmanned sea surface vehicles (USSV) requires a six degree of freedom dynamics simulation in the time domain. In order to be interactive, the VE requires real-time performance of the underlying dynamics simulator. In general, the dynamics simulation of USSVs involves the following four main operations: (1) computation of dynamic pressure head due to fluid flow around the hull under the ocean wave, (2) computation of wet surface, (3) computing the surface integral of the dynamic pressure head over the wet surface, and (4) solving the rigid body dynamics equation. The first three operations depend upon the boat geometry complexity and need to be performed at each time step, making the simulation run very slow. In this paper, we address the problem of physics preserving model simplification for real-time potential flow based simulator for a USSV in the time domain, with an arbitrary hull geometry. The paper reports model simplification algorithms based on clustering, temporal coherence and hardware acceleration using parallel computing on multiple cores to obtain real time simulation performance for the developed VE.
منابع مشابه
Vertical Dynamics Modeling and Simulation of a Six-Wheel Unmanned Ground Vehicle
Vertical dynamics modeling and simulation of a six-wheel unmanned military vehicle (MULE) studied in this paper. The Common Mobility Platform (CMP) chassis provided mobility, built around an advanced propulsion and articulated suspension system gave the vehicle ability to negotiate complex terrain, obstacles, and gaps that a dismounted squad would encounter. Aiming at modeling of vehicle vertic...
متن کاملA real-time recursive dynamic model for vehicle driving simulators
This paper presents the Real-Time Recursive Dynamics (RTRD) model that is developed for driving simulators. The model could be implemented in the Driving Simulator. The RTRD can also be used for off-line high-speed dynamics analysis, compared with commercial multibody dynamics codes, to speed up mechanical design process. An overview of RTRD is presented in the paper. Basic models for specific ...
متن کاملAn Interactive, physics-based unmanned ground vehicle simulator leveraging open source gaming technology: Progress in the development and application of the virtual
It is widely recognized that simulation is pivotal to vehicle development, whether manned or unmanned. There are few dedicated choices, however, for those wishing to perform realistic, end-to-end simulations of unmanned ground vehicles (UGVs). The Virtual Autonomous Navigation Environment (VANE), under development by US Army Engineer Research and Development Center (ERDC), provides such capabil...
متن کاملReal-time and High-fidelity Simulation Environment for Autonomous Ground Vehicle Dynamics
Integrated simulation capabilities that are high-fidelity, fast, and have scalable architecture are essential to support autonomous vehicle design and performance assessment for the U.S. Army's growing use of unmanned ground vehicles (UGV). The HMMWV simulation described in this paper embodies key features of the real vehicle, including a complex suspension and steering dynamics, wheel-soil mod...
متن کاملAn Autopilot Based on a Local Control Network Design for an Unmanned Surface Vehicle
Over recent years, a number of marine autopilots designed using linear techniques have underperformed owing to their inability to cope with nonlinear vessel dynamics. To this end, a new design framework for the development of nonlinear autopilots is proposed. Local Control Networks (LCNs) can be used in the design of nonlinear control systems. In this paper, a LCN approach is taken in the desig...
متن کامل